Investigadores han utilizado la criomicroscopía electrónica para describir cómo se regula el ‘motor energético’ de uno de los complejos proteicos implicados en cáncer
Investigadores del CNIO han utilizado la criomicroscopía electrónica para describir cómo se regula el ‘motor energético’ de uno de los complejos proteicos implicados en cáncer, una potencial diana para reducir el crecimiento de tumores.
Se suele decir que las proteínas son los ladrillos con los que se construye la vida. En el interior de las células, las proteínas se asocian en grandes complejos macromoléculas, consorcios de proteínas que cooperan para llevar a cabo funciones específicas. Muchas investigaciones del cáncer se centran en encontrar inhibidores para algunos de estos complejos proteicos, como son las quinasas mTOR y ATR o la enzima telomerasa, que están sobreactivadas en los tumores.
Existen unas proteínas cuya función es construir estos complejos (las llamadas chaperonas y cochaperonas) y la inhibición de este proceso de ensamblaje se está estudiando como estrategia contra el cáncer. Podría decirse que quinasas y enzimas como mTOR, ATR o la telomerasa son un edificio en construcción y las chaperonas (como HSP90) y cochaperonas (como R2TP), las maquinarias que lo construyen.
Las evidencias actuales sugieren el potencial terapéutico de RUVBL1-RUVBL2, el motor energético de la cochaperona R2TP, en el tratamiento contra el cáncer. Ahora, investigadores del Grupo de Complejos Macromoleculares en la Respuesta a Daños en el ADN del Centro Nacional de Investigaciones Oncológicas (CNIO) han utilizado el poder de la criomicroscopía electrónica para determinar el mecanismo que regula RUVBL1 y RUVBL2.El trabajo se publica en Science Advances.